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Abstract

Coastal areas support seagrass meadows, which offer crucial ecosystem services
including erosion control and carbon sequestration. However, these areas are
increasingly impacted by human activities, leading to habitat fragmentation
and seagrass decline. In situ surveys, traditionally performed to monitor these
ecosystems face limitations on temporal and spatial coverage, particularly in
intertidal zones, prompting the addition of satellite data within monitoring pro-
grams. Yet, satellite remote sensing can be limited by too coarse spatial and/or
spectral resolution, making it difficult to discriminate seagrass from other macro-
phytes in highly heterogenous meadows. Drone (unmanned aerial vehicles –
UAV) images at a very high spatial resolution offer a promising solution to ad-
dress challenges related to spatial heterogeneity and intrapixel mixture. This
study focuses on using drone acquisitions with a ten spectral band sensor simi-
lar to that onboard Sentinel-2, for mapping intertidal macrophytes at low tide
(i.e. during a period of emersion) and effectively discriminating between sea-
grass and green macroalgae. Nine drone flights were conducted at two different
altitudes (12 m and 120 m) across heterogeneous intertidal European habitats
in France and Portugal, providing multispectral reflectance observation at very
high spatial resolution (8 mm and 80 mm respectively). Taking advantage of
their extremely high spatial resolution; the low altitude flights were used to
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train a Neural Network classifier to discrimintate five taxonomic classes of in-
tertidal vegetation: Magnoliopsida (Seagrass), Chlorophyceae (Green macroal-
gae), Phaeophyceae (Brown algae), Rhodophyceae (Red macroalgae) and ben-
thic Bacillariophyceae (Benthic diatoms), and validated using concomitant field
measurements. Classification of drone imagery resulted in an overall accuracy of
94% across all sites and images, covering a total area of 467 000 m². The model
exhibited an accuracy of 96.4% in identifying seagrass. In particular , seagrass
and green algae can be discriminated. The very high spatial resolution of the
drone data made it possible to assess the influence of spatial resolution on the
classification outputs, showing a limited loss in seagrass detection up to about
10m. Altogether, our findings suggest that the Multi-Spectral Instrument (MSI)
onboard Sentinel-2 offers a relevant trade-off between its spatial and spectral
resolution, thus offering promising perspectives for satellite remote sensing of
intertidal biodiversity over lager scales.

Keywords: Drone, Remote Sensing, Seagrass, Coastal Ecosystems, Neural
Network

1. Introduction

Coastal areas are vital hotspots for marine biodiversity, with intertidal sea-
grass meadows playing a crucial role at the interface between land and ocean
[1]. Seagrass meadows provide a myriad of ecosystem services, including carbon
sequestration, oxygen production, protection against sea-level rise and coastline
erosion, and mitigation of eutrophication [1, 2]. They serve as vital habitats
for a diverse array of marine and terrestrial species, providing living, breeding,
and feeding grounds [3, 4, 5]. Due to the concentration of human activities in
coastal zones, seagrass meadows are directly exposed to and impacted by anthro-
pogenic pressures. Global regression and fragmentation of seagrass meadows are
currently observed due to climate change, diseases, urbanization, land reclama-
tion, dredging, competition with alien species, and reduction in water quality
[6, 7, 8, 9, 10, 11, 12, 2]. Both habitat fragmentation and reduction, in turn, can
severely compromise the effectiveness of ecosystem services provided by seagrass
meadows. While improvements in water quality and hydrodynamics have been
recently reported in Europe, allowing an overall recovery of seagrass ecosystems
at local and European scales, many coastal waters worldwide are still subjected
to strong eutrophication processes [13, 14, 2]. Coastal eutrophication has been
associated to excessive accumulation of green macroalgae (algal blooms), so-
called green tides [15]. Green tides produce shade and suffocation over seagrass
individuals, thus threatening the health of seagrass ecosystems [16].

The importance of seagrass meadows and the variety of ecosystem services they
provide have led to the enhancement of both global and regional programs to
monitor Essential Oceanic Variable (EOVs) such as seagrass composition [17],
as well as Essential Biodiversity Variable (EBVs) such as seagrass taxonomic
diversity, species distribution, population abundance, and phenology [18]. Tra-
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ditionally, indicators of seagrass status have been quantified using in situ mea-
surements. However, the acquisition of field measurements in intertidal zones
is notoriously challenging. Intertidal seagrass meadows are only exposed during
low tide and can be situated in difficult-to-reach mudflats, potentially leading
to inaccurate and limited estimations with conventional sampling techniques
[19]. Satellite observations have been proven effective in complementing in situ
sampling, allowing for near real-time and consistent retrieval of seagrass EOVs
and EBVs over extensive meadows [14, 20, 21, 22, 23, 24].

While satellite remote sensing (RS) provides temporally consistent observa-
tions over large spatial scales, its utilization over intertidal areas is limited by
several constraints. Satellite missions with a high temporal resolution (e.g. daily
MODIS observation) are limited by too coarse spatial resolution (>100 m) to
accurately map patchy seagrass meadows. Missions with a high spatial reso-
lution such as Sentinel-2 (10 m) or Landsat8/9 (30 m) can be limited by low
spectral resolution. The limited number of spectral bands challenges accurate
discrimination of seagrass from other co-existing macrophytes. In particular,
Chlorophyceae (green algae) and marine Magnoliopsida (seagrass) share the
same pigment composition [25, 26], resulting in a similar spectral signature in
terms of reflectance, especially in the visible range [27, 28]. Recently, using ad-
vanced machine-learning algorithms trained with a large hyperspectral library
of more than 300 field reflectance spectra, [27] demonstrated that it was possi-
ble to discriminate Magnoliopsida from Chlorophyceae using reflectance spectra
at Sentinel-2 ’s spectral resolution. However the application of this approach
to satellite RS remains to be validated. Moreover patches of green algae can
develop at small spatial scales that are not observable using Sentinel-2 and/or
Landsat-8/9 images [29], especially during the initial stage of a green tide.

Drones (Unmanned Aerial Vehicles – UAVs) can potentially fill the data gaps
left by satellite RS and in situ measurements, due to their ability to provide
spatially-explicit observations at very high spatial resolutions (pixel size from
mm to cm) while capturing data at multi-spectral resolution [30, 31]. The versa-
tility of drones allows for their application across a diverse thematic range , from
coastal zone monitoring and management [32, 33, 34, 35, 36] to mapping species
distribution [37, 38, 39, 40, 41, 2, 36]. However, when applied to coastal habitat
mapping, previous case studies were mostly limited to a low number of drone
flights over a single study site, restricting the generalizability of their application
over wider geographical scales [40, 42, 43, 41]. These studies have demonstrated
the capability of drones to map intertidal (and subtidal) habitats, including sea-
grasses; however a broader generalization of these findings is still lacking. The
current paper uniquely expands the spatial and methodological scope of drone-
based remote sensing for intertidal habitat mapping across a broad biogeograph-
ical range. It demonstrates the feasibility of accurately classifying diverse macro-
phyte types across various study sites, with a particular focus on distinguishing
Magnoliopsida (seagrasses) and Chlorophyceae (green algae). Unlike previous
studies, our approach integrates multiple spatial scales by simulating satellite
resolutions and quantifying the impact of spatial resolution on classification ac-
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curacy. Nine drone flights were performed over soft-bottom (mud and sand)
intertidal areas along the Atlantic coastlines of two European countries (France
and Portugal), covering a wide range of habitats, from monospecific seagrass
meadows to meadows mixed with green, or red macroalgae. A deep learning
algorithm was trained and validated for macrophyte discrimination, emphasiz-
ing applicability across diverse sites without losing prediction accuracy. The
classification maps obtained at a very high spatial resolution with the drone
were spatially degraded to satellite resolutions, making it possible to assess the
effect of spatial resolution on classification accuracy, and provide insights for
coastal habitat mapping using satellite remote sensing. This study is, there-
fore, among the first to quantify the effects of spatial resolution on the accuracy
of drone-based intertidal macrophyte classification across a wide geographical
scale, providing a framework to better understand satellite-based classification
challenges.

2. Material & Methods

2.1. Study sites
Seven study sites distributed between France and Portugal were selected for

their extensive intertidal seagrass beds. Two sites were located in the Gulf of
Morbihan, France (Figure 1 A : 47.5791°N, 2.8018°W). This gulf covers an area
of 115 km² and is only connected to the sea through a 900 m wide channel.
A total of 53 small islands are scattered across the gulf leading to 250 km of
shorelines. Patchy seagrass meadows can be found on many of these islands.
One of the sites within the gulf was on one its islands (Arz) and the other was
located further south on a mainland beach area (Duer). The Gulf of Morbihan
is a Natura 2000 site and a Regional Protected Area due to its rich biodiver-
sity, including its seagrass meadows, and is also classified as a RAMSAR site,
which highlights its significance as a wetland of international importance. Two
other sites were located in Bourgneuf Bay, France (Figure 1 B : 46.9849°N,
2.1488°W) which is a 340 km² semi-enclosed macrotidal bay, protected from
waves by Noirmoutier Island. Bourgneuf bay hosts a large intertidal seagrass
meadow of about 6 km² [44]. Within this meadow, the sites observed by drones
(L’Epine and Barbatre) contained monospecific beds of Zostera noltei (dwarf
eelgrass) with very little mixing with other macrophytes. Bourgneuf Bay is
also part of the Natura 2000 network and serves as a RAMSAR site due to its
critical habitat for migratory bird species and its extensive seagrass meadows
[4]. Three sites were surveyed in the Ria de Aveiro Coastal Lagoon in Portugal
(Figure 1 C : 40.6887°N, 8.6810°W). The extent of this lagoon is ~83 km² (at
low tide) with many narrow channels, large salt marshes and many mudflats
that uncover at low tide [45]. It is connected to the open sea through a single
channel, with a tidal lag between the North and the South of the lagoon. The
southernmost site (Gafanha) is a mudflat located in the Mira channel (one of the
four main channels of the lagoon) whereas the two other sites (Mataduços and
Marinha Lanzarote) were situated in the middle of the lagoon, with Marinha
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Lanzarote only accessible by boat. These Portuguese sites (at Ria de Aveiro)
are characterized by a more diverse intertidal vegetation, where patches of sea-
grass intermingle with red, brown, and green macroalgae. The Ria de Aveiro
costal lagoon, like the other study areas, is a Natura 2000 site, recognized for its
rich mosaic of habitats (EU Habitats Directive) and importance for biodiversity,
including migratory bird species (part of the EU Birds Directive) and intertidal
vegetation (from mudflats to seagrass meadows and salt marshes)..

Figure 1: Location of drone flights in France and Portugal. A: Gulf of Morbihan (Two sites),
B: Bourgneuf Bay (Two sites), C: Ria de Aveiro Coastal Lagoon (Three sites). Golden areas
represents the intertidal zone.

2.2. Field sampling
2.2.1. Drone acquisition

At each location, a DJI Matrice 200 quadcopter drone equipped with a Mi-
casense RedEdge Dual MX multispectral camera was flown to take 1.2 million
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Table 1: List of drone flights, summarising the date, the altitude, and the purpose of each
flight. 12 m and 120 m flights have a spatial resolution of 8 and 80 mm respectively.

pixel reflectance photographs with ten spectral bands ranging from the blue to
the near-infrared (NIR): 444, 475, 531, 560, 650, 668, 705, 717, 740 and 840 nm.
To ensure consistent lighting conditions across flight paths, the drone’s trajec-
tory was aligned to maintain a solar azimuth angle of 90 degrees. An overlap
of 70% and 80% (side and front respectively) between each image was set for
each flight. A downwelling light sensor (DLS2) was used to acquire irradiance
data concomitantly with the camera measurements. Raw data were calibrated
in reflectance using a calibration panel reflective at ~50% provided by the man-
ufacturer. Across all sites, flights were made at two different altitudes : 12
m or/and 120 m, with a spatial resolution of 8 mm and 80 mm, respectively
(Table 1). Low-altitude flights, with a spatial resolution of 8 mm, were used to
build the training dataset for the neural network, as this high resolution allowed
for precise photo-interpretation of vegetation classes. In contrast, high-altitude
flights were used for validation purposes.

2.2.2. Ground Control Points
Before each flight, targets used as ground control points were distributed over

the study site and georeferenced with a Trimble © Geo XH 6000 differential
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GPS (dGPS). Ground control points were used to correct georeferencing im-
precision of orthomosaics with an horizontal and vertical accuracy of 10cm. A
dGPS was also used to georeference quadrats of 0.25 m², which assessed the
presence or absence of five key taxonomic classes of intertidal vegetation: Bacil-
lariophyceae (benthic diatoms forming biofilms at the sediment surface during
low tide with biofilm’s size ranging from small patches (m²) to entire mudflats
(km²); henceforth: Benthic diatoms), Phaeophyceae (brown macroalgae gener-
ally attached to rocks or other substrates able to form dense beds in the inter-
tidal zone; henceforth: Brown macroalgae), Magnoliopsida (seagrasses, rooted
flowering marine plants able to form extensive meadows on soft sediments; hence-
forth: Seagrasses), Chlorophyceae (green macroalgae, typically found attached
to rocks or washed ashore; henceforth: Green macroalgae), and Rhodophyceae
(red macroalgae, attached to hard substrates but can also be found on soft-
bottom substrate; henceforth: Red macroalgae). Only homogeneous vegetation
patches extending over several meters were selected as ground control points.
Pictures of each quadrat were uploaded online to the open-portal Global Bio-
diversity Information Facility (GBIF) platform [46]. Each photograph was also
processed to estimate the percent cover of each type of vegetation using an
image processing software [ImageJ, 47]. Hyperspectral reflectance signatures
of each vegetation class were recorded using an ASD FieldSpec HandHeld 2
spectroradiometer, which acquires reflectance between 325 and 1075 nm, with 1
nm of spectral resolution. Hyperspectral signatures served dual purposes: they
validate the radiometric calibration of drone data and contributed to misclassi-
fication reduction in photo interpretations.
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Figure 2: The five taxonomic classes of vegetation used to train the Neural Network model
and an example of their raw spectral signatures at the spectral resolution of the Micasense
RedEdge Dual MX. A : Magnoliopsida (Zostera noltei) ; B : Phaeophyceae (Fucus sp.) ; C
: Rhodophyceae (Gracilaria vermiculophylla) ; D : Chlorophyceae (Ulva sp.) ; E : Bacillar-
iophyceae (Benthic diatoms). Classes and species taxonomy following the WORMS - World
Register of Marine Species classfication.

2.3. Drone Processing
A structure-from-motion photogrammetry software [Agisoft Metashape, 48]

was used to process images to obtain multispectral orthomosaics of each flight.
The process for orthomosaicking was identical for every flight. First, key tying
points were detected inside each image and between overlapping images in or-
der to obtain a sparse point cloud. This cloud was cleaned using a reprojection
accuracy metric to remove noisy points. A dense point cloud was then produced
using a structure from motion algorithm. A surface interpolation of this dense
point cloud was made to obtain a digital surface model (DSM), used to recon-
struct the multispectral ortho-image [49]. Low-altitude drone flights produced
ortho-images with a very high spatial resolution (8 mm per pixel), making it
efficient to visually distinguish between the various types of vegetation. High-
altitude flights allowed to cover larger areas and produced images with a pixel
size of 80 mm (Table 1).

2.4. General Workflow
The spectral similarities of the reflectance signatures at the spectral resolution

of the Micasense senor between intertidal green macrophytes (Magnoliopsida
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and Chlorophyceae) make their discrimination challenging using simple classi-
fication algorithms (Figure 2 F). To overcome this challenge, a deep learning
classification method was trained, validated, and applied to each drone flight
(Figure 3).

Figure 3: Schematic representation of the workflow. Parallelograms represent input or output
data, and rectangles represent Python processing algorithms. The overall workflow of this
study is divided into two distinct parts based on the spatial resolution of the drone flights:
high-resolution flights (pixel size: 8 mm) were used for training and prediction of the Neural
Network model, whereas lower-resolution flights (pixel size: 80 mm) were solely employed for
prediction purposes. Validation has been performed on both high and low-resolution flights.

2.4.1. Training dataset building
A dataset containing photo-interpreted drone reflectance pixels was built to

train a Neural Network model. The training pixels were categorized into seven
different classes, representing the various habitats encountered at the different
study sites: sediment, water, green macroalgae, seagrasses, Benthic diatoms,
brown macroalgae and red macroalgae. Only data from the low-altitude flights
(Table 1) were used for training because their 8 mm spatial resolution allowed to
avoid spectral sub-pixel mixing and to accurately identify vegetation classes. In
the field, seagrasses displayed two types of color were observed (i.e. whereas most
seagrass had green leaves, brownish leaves were also observed due to senescence
or photo-degradaration). Careful attention was given to incorporating training
pixels from both color types into the training dataset for the seagrass class.
This approach was consistently applied to all classes within the model. More
than 418,000 pixels at 8 mm resolution from the 3 training flights were used
to train the model (Table 2). For model training, 21 variables were used as
predictors: the ten raw spectral bands of the Micasense RedEdge Dual MX
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Table 2: Vegetation Classes of the model and the number of pixels used to train and validate
each class

multispectral camera (ranging from 444 nm to 840 nm), the same ten spectral
bands standardized using a min/max transformation (Equation 1 ; [50]) and the
Normalized difference vegetation index (NDVI, Equation 2). Standardisation of
spectral bands is commonly used to eliminate the scaling differences between
spectra and to limit the effect of biomass on the spectra shape [26, 27].

𝑅∗
𝑖 (𝜆) = 𝑅𝑖(𝜆) − 𝑚𝑖𝑛(𝑅𝑖)

𝑚𝑎𝑥(𝑅𝑖) − 𝑚𝑖𝑛(𝑅𝑖)
(1)

where 𝑅𝑖(𝜆) is the reflectance at the wavelength (𝜆) of each individual spectra
(𝑖), 𝑚𝑖𝑛(𝑅𝑖), and 𝑚𝑎𝑥(𝑅𝑖) are the minimum and maximum value of the spectra
(𝑖)

𝑁𝐷𝑉 𝐼 = 𝑅(840𝑛𝑚) − 𝑅(668𝑛𝑚)
𝑅(840𝑛𝑚) + 𝑅(668𝑛𝑚) (2)

where 𝑅(840𝑛𝑚) is the reflectance at 840 nm and 𝑅(668𝑛𝑚) is the reflectance
at 668 nm.

2.4.2. Model building
A neural network classification model was built using the fastai workflow [51].

This model was composed of 2 hidden layers and has a total of 26 054 trainable
parameters. Parameters have been fine-tuned using 12 epoch to minimize the
error rate. This model has been called DISCOV, standing for Drone Intertidal
Substrat Classification Of Vegetation.
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2.4.3. Validation
The workflow of this study revolves around two distinct flight heights (12

and 120 m, Figure 3) where ensuring consistency between reflectances at both
heights is crucial. This comparison was conducted at sites where low and high-
altitude flights overlapped. To compare reflectances of both flights, the low-
altitude flights were resampled to the same spatial resolution and grid as the
high-altitude flights using a median resampling method. Reflectance values
were then extracted, and a scatterplot was generated. The Root Mean Square
Error (RMSE) was computed to compare the difference between the raw and
standardised reflectance.

The classification model was applied to all flights at both 12 and 120 m of
altitude. In situ information on georeferenced class type and percent cover, ac-
quired over homogeneous vegetation patches at the same time as drone flights
was used to assess the model accuracy. These images were used to construct a
validation dataset indicating the presence or absence of each class. Additionally
to the quadrat-based validation dataset, polygons of each class were photo in-
terpreted in order to increase the number of pixels of the validation dataset. A
total of 536,000 pixels were used to validate the Neural Network classifier. The
sites with the lowest and highest number of validation data were Gafanha Low
(17316 pixels) and Marinha Lanzarote (159713 pixels), respectively. A confu-
sion matrix, along with precision metrics such as global accuracy, sensitivity,
specificity, F1 score, and Kappa coefficient, were generated for each site. These
metrics were computed as follow :

Global accuracy = ∑𝑘
𝑖=1 TP𝑖

∑𝑘
𝑖=1 (TP𝑖 + FP𝑖 + FN𝑖)

Sensitivity𝑖 = TP𝑖
TP𝑖 + FN𝑖

Specificity𝑖 = TN𝑖
TN𝑖 + FP𝑖

F1𝑖 = 2 ⋅ TP𝑖
2 ⋅ TP𝑖 + FP𝑖 + FN𝑖

Where TP𝑖, TN𝑖, FN𝑖 and FP𝑖 represent the true positives, true negatives, false
negatives and false positives relative to the class i.

All validation matrices were then aggregated to create an overall matrix

2.5. Variable Importance
Variable Importance Plots (VIP) serve as a method to identify which predictors

are important for predicting a specific class. Out of the 21 predictors used in this
study, Variable Importance was computed only for the raw and standardized
values of the 10 spectral bands captured by the MicaSense camera. This is
achieved by repeatedly predicting the same dataset while randomly shuffling one
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predictor at a time. The benchmark score obtained after each iteration is then
compared to the benchmark score obtained without shuffling any variables. The
greater the difference between these two benchmark values, the more important
the variable is for the model [52].

2.6. Influence of the spatial resolution on classification
To assess the impact of spatial resolution on the model’s output, we resampled

the drone orthomosaics from their native resolution (8 cm for high-altitude
flights) using the “average” method from the terra package in R. The rasters
were resampled to 32 different resolutions, ranging from 10 cm to 30 m. DISCOV
was then applied to these resampled rasters, and the results were compared to
the original model predictions. For each resolution and vegetation class, we
calculated the predicted area loss, where a score of 0 indicates no area loss
during spatial resampling, and a score of 100 indicates complete loss of the
vegetation class.

We used a Generalized Linear Model (GLM) with a Beta distribution to exam-
ine the relationship between pixel resolution, vegetation class, and their interac-
tion on the loss of vegetation. The loss of vegetation was modelled as function of
the interaction between pixel resolution and vegetation class (Benthic diatoms,
brown macroalgae, seagrass, green macroalgae and red macroalgae). Sample vs
fitted residuals and quartile-quartile graphics were assessed visually, to ensure
assumptions of the models used were met.

2.7. Impact of mixed vegetation cover on the prediction
The key aspect of the workflow adopted in the present study is the mapping at

two different altitudes (12 and 120 m), resulting in two distinct resolutions for
the same area (8 and 80 mm; respectively). The high-resolution flight was used
to estimate the sub-pixel composition for each pixel of the lower-resolution flight.
Consequently, within each pixel of the high-altitude flights, the contribution of
each vegetation class (% cover) was obtained, and a kernel density plot was
generated. This plot provided a visual representation of the model’s behavior in
mixed vegetation scenarios. It helped to understand the minimum vegetation
cover of a given class within a pixel necessary for the model to confidently predict
that class.

3. Results

3.1. Reflectance comparison between the two different altitudes
In this study, drone flights were conducted at two different altitudes (12 and

120 m) to construct the neural network model. At the sites where the flights at
both altitudes overlapped, the reflectance was compared. Overall there was a
good agreement between the two altitudes (RMSE : 0.027 ; Figure 4).

12



Figure 4: Comparison of reflectance retrieved from both low-altitude and high-altitude flights
over a common area. The black dashed line represents a 1 to 1 relationship. Left (A) plots
raw data and right (B) plots standardized data (Equation 1).

There was a slight underestimation of raw reflectance values in the high-
altitude flight, particularly for higher reflectance values (Figure 4 A). Since
both flights were conducted over vegetated areas, the highest reflectance values
correspond to the infrared part of the spectrum. This difference was not present
when the reflectance has been standardized (Equation 1 ; Figure 4 B).

3.2. Classification
Each drone flight was used to produce a prediction map, as well as a probability

map that indicates the model-derived probability of the selected class for every
pixel. The low-altitude flight conducted in Gafanha, Portugal, represented the
site with the highest complexity (Figure 5). Among the five vegetation classes
on which the model was trained, four were present on this site, with green and
red macroalgae mixed with a seagrass meadow. There were also benthic diatoms
biofilms on sediment surface. Although the seagrass was solely composed of a
single species, Zostera noltei, two colors of this species could be observed: dark
green (corresponding to healthy leaves) and brown (when leaves are senescent
or have an altered pigment composition). Regardless of the variation of color,
the class Magnoliopsida (seagrass) was accurately predicted by the model (F1
score of 0.96 at that site).
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Figure 5: RGB orthomosaic (Left) and Prediction (Right) of the low altitude flight of Gafanha,
Portugal. The total extent of this flight was 3000 m² with a resolution of 8 mm per pixel. The
zoom covers an area equivalent to a 10-meter Sentinel-2 pixel size.

The high-altitude flight over Gafanha covered a total area of ~1 km² (Figure 6).
A channel contouring a small island was masked in the prediction map. Most
of the vegetation area was classified as seagrass by the model, including patches
with brown leaves. Only a few pixels were classified as green macroalgae (F1
score of 0.55). Patches of red macroalgae were correctly classified (F1 score of
0.85). In the northern part of the site and near the land edges, patches of the
halophyte Sporobolus maritimus (syn. Spartina maritima) were misclassified,
either as seagrass or as brown algae (F1 score of 0.77 and 0.71, respectively).
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Figure 6: RGB orthomosaic (Left) and Prediction (Right) of the high-altitude flight of
Gafanha, Portugal. The total extent of this flight was about 1 km² with a resolution of
80 mm per pixel. The yellow outline shows the extent of the low-altitude flight of Gafanha
presented in Figure 5. The zoom covers an area equivalent to a 10-meter Sentinel-2 pixel size.

Among the high altitude flights, the one acquired over the inner part of Ria
de Aveiro coastal lagoon covered the largest area with approximately 1.5 km²
(Figure 7). The vegetation present at the site was dominated by seagrass and
red macroalgae. The classification provided consistent results, with a patchy
seagrass meadow mixed with red macroalgae on the eastern part of the site. As
shown in the zoom (Figure 7), the edges of the meadow were mixed with green
macroalgae (Ulva sp.), which the model agreed with (F1 score of 0.89 for green
algae, 0.97 for seagrass and 0.98 for red algae).
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Figure 7: RGB orthomosaic (Top) and Prediction (Bottom) of the flight made in the inner
part of Ria de Aveiro lagoon, Portugal. The total extent of this flight was about 1.5 km² with
a resolution of 80 mm per pixel. The zoom inserts cover an area equivalent to the size of a
10-meter Sentinel-2 pixel.

The flight over L’Epine in Noirmoutier Island, France (Figure 8 A) was con-
ducted near a dike, which crossed the northern part of the site from West to
East. Alongside this dike, Fucale brown macroalgae (Fucus spp., Ascophyllum
nodosum) were attached to sparse rocks, and stranded green algae (Ulva spp.)
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could be observed, which was correctly reproduced by the prediction (Figure 8
B). This site was characterized by a high mixture between green macroalgae
and seagrass but these two classes were correctly discriminated by the classifier
(F1 score of 0.97 and 0.98 respectively).

Figure 8: RGB orthomosaic (Top) and Prediction (Bottom) of L’Epine, France. The total
extent of this flight was about 28 000 m² with a resolution of 80 mm per pixel. The zoom
covers an area equivalent to a 10-meter Sentinel-2 pixel size.

3.3. Validation of the model
With all drone flights combined, the model global accuracy was 94.26% with

a Kappa coefficient of 0.92 (Figure 9).
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Figure 9: A global confusion matrix on the left is derived from validation data across each
flight, while a mosaic of confusion matrices from individual flights is presented on the right.
The labels inside the matrices indicate the balanced accuracy for each class. The labels at the
bottom of the global matrix indicate the User’s accuracy for each class, and those on the right
indicate the Producer’s Accuracy. The values adjacent to the names of each site represent the
proportion of total pixels from that site contributing to the overall matrix. Grey lines within
the mosaic indicate the absence of validation data for the class at that site. The table at the
bottom summarizes the Sensitivity, Specificity, and Accuracy for each class and for the overall
model.

The lowest performing site was Gafanha High (global accuracy of 75.45%)
whereas Mataduços was the site with the most accurate prediction (global accu-
racy of 98.05%). Overall, the classes Phaeophyceae, Magnoliopsida, Sediment
and Rhodophyceae were correctly classified with a balanced accuracy of 1, 0.96,
0.96 and 0.91 respectively. Bacillariophyceae was the least accurate class (accu-
racy of 0.72 ) mainly due to confusion with Magnoliopsida and Sediment.

3.4. Variable importance
The computation of the variable importance made it possible to identify which

bands were the most useful for class prediction (Figure 10).

18



Figure 10: Variable Importance of the Neural Network Classifier for each taxonomic class. The
longer the slice, the more important the variable for prediction of each class. The right plot
shows the drone raw and standardised reflectance spectra of each class. Each slice represents
the Variable Importance (VI) of both raw and standardised reflectance combined.

The spectral bands at 444, 717 and 842 nm of the Micasense camera did not
provide important information to discriminate any of the vegetation classes. The
band at 531 nm was the most important predictor by far for the classifier to ac-
curately predict Chlorophyceae. In fact, at this wavelength, the Chlorophyceae
spectra showed the highest reflectance among all vegetation classes (Figure 2 F).
The bands at 531 and 740 nm were the most important predictors for Phaeo-
phyceae, corresponding to the lowest reflectance among all classes. Bands at
475 and 560 nm were the most important predictors for Bacillariophyceae and
Rhodophyceae, respectively. Four predictors, ranging from the green (560 nm)
to the RedEdge (705 nm) bands were important to accurately predict Magno-
liopsida.

3.5. Effect of spatial resolution on the classification
Clear differences were seen in vegetation loss across spatial resolutions and

vegetation classes (Figure 11). At a fine resolution of 1m, changes in the re-
trieved area for each vegetation type are minimal. Green macroalgae show the
highest loss, with 1.2% area lost compared to the native resolution (80 mm). As
the resolution coarsens to 10m, vegetation loss becomes more pronounced, with
green macroalgae again experiencing the greatest reduction (12% compared to
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8cm) and seagrass showing the smallest loss (1.3%). All green macroalgae have
been lost at a resolution of 30m (100% compared to 8cm), while seagrass ex-
periences a relatively small reduction of 11%. Brown and red macroalgae show
lower declines, with losses at 30m resolution reaching approximately 37% and
59%, respectively.

Figure 11: Predicted area loss for different vegetation types (green algae, seagrass, brown algae,
red algae) as a function of spatial resolution. Lines represent Generalized Linear Model (GLM)
predictions, and shaded areas indicate standard errors. As resolution decreases, predicted area
loss increases for all vegetation types, with green algae showing the highest loss and seagrass
the smallest at coarser resolutions.

3.6. Effect of the cover on the prediction
Using the very high-resolution low-altitude flight (8 mm pixels), we determined

the minimal cover (%) required to correctly classify a given class within the
corresponding high-altitude flight (8cm pixel resolution ; Figure 12).
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Figure 12: Kernel density plot showing the proportion of pixel well classified based on the
percent cover of the class in high altitude flight pixels of Gafanha, Portugal. Each subplot
shows all the pixels of the same classes on the high altitude flight. Cover (%) of classes was
retrieved using the result of the classification of the low altitude flight of Gafanha, Portugal.

A cover of at least 80 % was sufficient to have all the 80 mm pixels correctly
classified, with the exception of Magnoliopsida which required a higher cover
(>90 %) to be accurately classified. Concerning the probability of each class,
there is a linear relationship between the percent cover and the confidence of
the model to predict the class. To predict green macroalgae with a model
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likelihood of 0.85, a cover of 93 % was needed, 90 % for seagrass, 92 % for red
macroalgae and 97 % for benthic diatoms. When the vegetation cover of a given
class was 100 %, coarser high-flight pixels were correctly classified for all the
classes except for Bare Sediment, which was only correctly classified 80% of the
time. This phenomenon may be attributed to the time gap between the two
flights, allowing for microphytobenthos migration to the sediment surface during
low tide, consequently altering the model’s classification from bare sediment to
Bacillariophyceae.

4. Discussion

4.1. Vegetation Discrimination
The primary objective of this study was to develop a method for the accurate

classification of emerged macrophytes observed during low tide on tidal flats,
specifically focusing on distinguishing between Chlorophyceae (green macroal-
gae) and marine Magnoliopsida (seagrasses) using a multispectral resolution.
The discrimination between seagrasses and green macroalgae is challenging due
to their optical similarity in the visible range [53, 28, 54]. These two macro-
phytes share a similar pigment composition: chlorophyll-a (common to all vege-
tation types), chlorophyll-b (an additional photosynthetic pigment), and acces-
sory carotenoids such as zeaxanthin, lutein and neoxanthin (Figure 13). Their
spectral responses could be close, particularly at a multispectral resolution. Sea-
grass and green macroalgae frequently co-occur in intertidal areas, and can in-
termingle within a remote sensing pixel if the spatial resolution is too low. Here,
the issue of intra-pixel mixing was resolved thanks to the very high spatial res-
olution of the drone (from 8 to 80 mm). In this study the risk of spectral
confusion was avoided with a machine-learning approach exploiting a neural
networks classifier. Our drone flights and a recent study based on in situ ra-
diometry, suggested that a sensor with at least eight spectral bands ranging
from 500 to 850 nm, and including a green band at 530 nm and a RedEdge
band at 730 nm, was crucial to accurately discriminate green macroalgae from
seagrasses [27].
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Figure 13: Photosynthetic and carotenoid pigments present (Green) or absent (Red) in each
taxonomic class present in the Neural Network Classifier, along with their absorption wave-
length measured with spectroradiometer, Chl-b: chlorophyll-b, Chl-c: chlorophyll-c, Fuco:
fucoxanthin, Zea: zeaxanthin, Diad: diadinoxanthin, Lut: lutein, Neo: neoxanthin, PE: phy-
coerythrin, PC: phycocyanin; [25, 26, 55, 56, 57].

Figure 14: Sample of Figure 9 focusing on green macrophytes. The labels inside the matrix
indicate the number of pixels.

Meeting these two criteria, the Micasense RedEdge-MX DUAL camera used
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in this study, enabled the classifier to achieve 97% accuracy between these two
classes (Figure 14). Even if their pigment composition is similar, differences in
the spectral shape can be observed, with green algae having a higher reflectance
peak at 560 nm as well as a higher NIR plateau than seagrass (Figure 2). Such
differences were previously attributed to differences in pigments concentration
and/or ratios [58], cellular structure as well as in the orientation of the plant at
the sediment surface [59, 60, 61].

The variable importance analysis (Figure 10) identified that the band at 531
nm was the most important for accurately identifying Chlorophyceae. In fact,
at this wavelength, Chlorophyceae exhibited the highest reflectance among all
other classes, highlighting the difference in carotenoid to chlorophyll-a ratios
between seagrasses and green macroalgae [62]. Concerning Phaeophyceae, the
thick cell walls of these macroalgae [63] make it more reflective in the infrared
part of the spectra [64], while the presence of fucoxanthin and zeaxanthin re-
sult in a low reflectance in the visible region (Figure 10 ; Figure 13). These
two key features have been identified by the Neural Network as the two prin-
cipal predictors to accurately identify brown algae (Figure 10). Similarly, the
presence of phycoerythrin and phycocyanin in Rhodophyceae contributes to the
lowest reflectance among all classes in the spectral range from 560 to 615 nm
(Figure 10). Indeed the band at 560 nm has been identified as important for
identifying this class, likely due to phycoerythrin absorption at this wavelength.
Regarding Bacillariophyceae, 475 nm was the most important predictor for this
class (Figure 10). Indeed, the reflectance at 475 nm was higher for Bacillario-
phyceae than for any other vegetation class (Figure 2), very likely due to the
low biomass (and associated concentration of blue-absorbing pigments) of these
unicellular organisms compared to seagrass and macroalgae.

4.2. Altitude and Temporal Effects on Vegetation Prediction Accuracy
The ability to differentiate between various types of vegetation plays a critical

role in ecological monitoring and coastal management [65]. By distinguishing
between seagrasses and macroalgae, our approach facilitates targeted conserva-
tion strategies, enabling more effective preservation and restoration efforts in
coastal ecosystems. While comparing the reflectance at two different altitudes
(12 m and 120 m with a spatial resolution of 8 and 80 mm, respectively), a
nearly one-to-one relationship was observed, with a Root Mean Square Error
(RMSE) of 0.02 (Figure 4). This result indicates that the reflectance measured
by remote sensing (RS) sensors was not significantly influenced by pixel size for
these two altitude. This finding is valuable for integrating drone-based data into
larger-scale mapping projects (e.g., combining satellite and drone mapping in
side-by-side analyses). The consistency of reflectance across altitudes suggests
that drones can be effectively used for finer-scale mapping without compromis-
ing data accuracy when merging with other platforms. However, it was observed
that there is an underestimation of the infrared part of the spectra in the high-
altitude dataset (Figure 4). Such disparity in infrared reflectance may stem from
temporal differences between the flights, possibly resulting in a slightly drier in-
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tertidal area and consequently higher infrared reflectance. This disparity poses
an issue for the methodology followed in the present study, relying solely on one
flight height for training. To address this issue, we employed min/max standard-
ized reflectance spectra as predictors for the model Equation 1. This approach
allowed us to eliminate the slight reflectance difference between the flights (Fig-
ure 4 B) and to focus on the shape of the spectra in the visible domain (400
to 700 nm). At these wavelength different pigments are associated with taxo-
nomic diagnostic features. In contrast to subtidal seagrasses, which maintain
relatively constant biomass throughout the year, intertidal seagrasses, like the
one studied in this work, exhibit strong seasonal phenology [24]. At some sites,
they completely disappear during the winter and reach their peak above-ground
biomass in the summer and early autumn. Along with these seasonal changes
in biomass, the pigment composition and ratios also vary throughout the year,
reflecting the plants’ adaptations to different environmental conditions [58, 66].
Standardization of spectral signatures helps to mitigate the impact of changing
biomass on the spectral profile, enabling the development of a model that can
reliably predict vegetation across different geographical locations and seasons.
This approach allows for consistent classification of vegetation despite variations
in biomass and fluctuations in light conditions, providing a robust tool for mon-
itoring and predicting vegetation dynamics [67, 68, 69]. However, due to the
strong phenology of intertidal seagrass meadows in Europe, the period when
a meadow is well-established can be temporally restricted, limiting the ideal
window for accurate detection.

4.3. Impact of Pixel Resolution on the prediction and Implications for Satellite
Remote Sensing

Pixel resolution plays a critical role in accuratly retrieving vegetation areas
from remote sensing data. As pixel size increases, we found a consistent decline
in area retrieval across all vegetation types, with more pronounced effects for
certain types, such as green algae (Figure 11). This highlights the sensitivity of
spatial resolution in detecting smaller or more fragmented vegetation features.
Green algae, being particularly patchy across all study sites, showed the steepest
decline in areal agreement as pixel size increases, which aligns with expectations
given the limitations of coarser resolution in capturing fine-scale details.

This resolution-area relationship has important implications for satellite mis-
sions like Sentinel-2 and Landsat, which are commonly used in marine and
coastal vegetation studies. Both satellites offer high-resolution imagery, with
pixel sizes of 10m and 30m, respectively. While these resolutions are suitable
for broad-scale environmental monitoring, they may be too coarse to capture
finer-scale heterogeneity, as it was observed with green macroalgae in this study.
Our findings suggest that, while the 30m resolution of Landsat may be adequate
for homogeneous vegetation types, such as seagrass, a higher resolution is essen-
tial for accurately mapping patchy vegetation like green algae. These findings
have direct implications for environmental management and conservation plan-
ning. Overlooking fine-scale vegetation features, such as those seen in green
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algae, could result in inadequate protection or restoration efforts, particularly
in ecologically sensitive coastal zones, as the early stages of green tides could be
challenging to detect at coarse resolutions.

Very high-resolution imagery offers more accurate vegetation mapping but
comes with trade-offs. As resolution increases, data costs rise, and processing
becomes more resource-intensive due to the larger file sizes and computational
demands. Consequently, high-resolution data requires more storage and can
slow down real-time applications. For large-scale monitoring of homogeneous
vegetation types, 10 m resolution of S2/MSI or even the 30 m of Landsat/OLI
is often sufficient. However, when mapping vegetation like macroalgae with an
heterogeneous distribution, the precision provided by higher-resolution imagery
is crucial, despite the additional costs and processing challenges it imposes.

4.4. Towards climate and biodiversity applications
Climate change, global warming, eutrophication, alien and invasive species

development, coastal erosion, and sea level rise are expected to continue impact-
ing coastal ecosystems in the future [70, 71, 72] and the demand for meaningful
and efficient monitoring of coastal habitats has never been higher[73, 74, 53].
Our findings, particularly the improved discrimination of intertidal seagrass
and green macroalgae from other intertidal vegetation classes, highlight the po-
tential of drone-based remote sensing to support diverse applications, from the
conservation of biodiversity to climate change adaptation strategies.

Due to increasing coastal eutrophication, macroalgal blooms are becoming in-
creasingly common in many regions around the world [75, 76]. These blooms can
have negative impacts on human health and local economic activities, includ-
ing human health, fishing and aquaculture, tourism, and recreational activities
[77, 76]. The first green tide events (i.e. bloom of green macroalgae of the genus
Ulva) were reported in Brittany, France, in the 1970s and have since been a con-
cern for local stakeholders and economic activities [78]. Some regions of the
world have witnessed an increase in brown macroalgae blooms, predominantly
involving algae of the genus Sargassum washing along the Caribbean coastlines
[79], and more recently Rugulopteryx okamurea in southern Europe [39]. Satel-
lite remote sensing has proven to be a valuable tool for mapping the spatial
and temporal extent of macroalgal blooms worldwide. However, due to limi-
tations in spatial resolution, it can only effectively map well-developed blooms
[80, 81, 82]. High spatial resolution drone imagery, coupled with an accurate
classification algorithm, could be used to map the early stages of macroalgal
blooms in areas known to have regular blooms or in new sites. Indeed, this ap-
proach could provide early warning alerts to local managers and complimentary
to traditional sampling methods to monitor coastal ecosystems. These methods
are generally time and resource-intensive, and the findings are often difficult to
scale up when applied alone. Earth Observation can bridge this gap and meet
the need for systematic monitoring of coastal ecosystems over large areas [83].
The retrieval of Essential Biodiversity Variables and Essential Ocean Variables
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through satellite observations has been increasingly common, enabling compre-
hensive monitoring of entire ecosystems over extended time periods [84, 14]. The
Water Framework Directive [65] mandates the achievement and maintenance of
“good ecological status” for all European waters, which necessitates a compre-
hensive understanding and monitoring of aquatic ecosystems, including coastal
habitats like seagrass beds [85, 86, 14].

Effective and efficient monitoring tools are essential for identifying the impacts
of human activities and natural changes on coastal ecosystems. On-demand,
multispectral drone observations at very high spatial resolution provide a novel
and powerful tool to rapidly and accurately acquire ground truth data, which
can be used to develop machine-learning algorithm for satellite sensors [23].
Spatially resolved data are indeed critical for calibrating and validating satel-
lite remote sensing observations, thereby enhancing our capacity to monitor
vast coastal areas. The integration of drone technology facilitates a scalable ap-
proach to environmental surveillance while taking into account the patchiness
of vegetation, offering significant advancements in the spatial and temporal res-
olution of data collection. This, in turn, supports the EU WFD’s objectives by
enabling more informed and timely management decisions for the conservation
and restoration of aquatic ecosystems.

5. Conclusion

The utilization of very high spatial resolution (from 8 to 80 mm) drone-based
remote sensing coupled with machine learning techniques has proven to be
an effective method for the discrimination of intertidal seagrasses from green
macroalgae with a multispectral resolution sensor. Standardized reflectance
was incorporated in the Neural Network model allowing for a better discrimi-
nation of spectral features related to pigment absorption in the visible region
of the spectrum. There was a striking difference between the variable of im-
portance to discriminate Magnoliopsida from Chlorophyceae. The latter was
essentially identified with the 451 nm spectral band while more spectral bands
were needed to identify the former, notably 650, 560, 668, and 705 nm. As
the spectral bands of the Micasense RedEdge Dual sensor are very similar to
those of Sentinel-2/MSI, we suggest that multispectral satellite data have the
potential to perform this discrimination between these green macrophytes. The
findings underscore the importance of adopting advanced remote sensing tools
in ecological studies and environmental monitoring, providing a foundation for
future research and policy implementation aimed at ecosystem conservation and
restoration.

6. Code availability

All code used to create DISCOV model and apply it to Micasense Dual MX
images, as described are available at https://oirysimon.com/discov
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