
University of Nantes

Doctoral Thesis

Characterization of Intertidal
Vegetation on European Coasts Using

Multi-Scale Remote Sensing in
Response to Natural and
Anthropogenic Pressures

Author:
Simon Oiry

Supervisors:
Prof. Laurent Barillé,

Dr. Pierre Gernez

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in Marine Ecology

as part of the

Remote Sensing, Benthic Ecology and Ecotoxicology team
of the

Institut Des Substances et Organismes de la Mer laboratory

March 11, 2025





iii

UNIVERSITY OF NANTES

Abstract
Sciences & Techniques

Institut Des Substances et Organismes de la Mer laboratory

Doctor of Philosophy in Marine Ecology

Characterization of Intertidal Vegetation on European Coasts Using
Multi-Scale Remote Sensing in Response to Natural and Anthropogenic

Pressures

by Simon Oiry

To Be Written





v

Table of contents

Abstract iii

Preface 1
Scientific papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Oral presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Introduction & Overview 7
1.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Hyperspectral classification of intertidal vegetation for coastal bio-
diversity 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Summary 35

References 37





vii

List of Figures

2.1 Examples of taxonomic classes of soft-bottom intertidal vegetation
in the field (a: Phaeophyceae (Fucus vesiculosus), b: Magnoliopsida
(Zostera noltei), c: Ulvophyceae (Ulva linza), d: Bacillariophyceae (Di-
atoms) and e: Xanthophyceae (Vaucheria spp.)). Scale bars show ap-
proximate scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Sample collection sites across Europe. . . . . . . . . . . . . . . . . . . 17
2.3 Spectral response functions for different hyper- and multi-spectral sen-

sors (ASD, Pleiades, Sentinel-2 (10 m), Sentinel-2 (20 m), Drone, and
PRISMA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Spectral signatures of different vegetation classes at different spectral
resolutions (ASD, Pleiades, Sentinel-2 10, Sentinel-2 10-20 m, Drone
and PRISMA). Lines show mean signature per wavelength, while shad-
ing shows 95% confidence interval. Confidence intervals were con-
sisently small and therefore are hard to distinguish. . . . . . . . . . . . 21

2.5 nMDS ordination showing similarities between vegetation classes at
different spectral resolutions (ASD, Pleiades, Sentinel-2 10, Sentinel-2
10-20 m, Drone and PRISMA). Point distances are based on cosine dis-
tance, polygons show the minimum convex hull to surround all points.
Stress values show the inaccuracy of the 2 dimensional representations. 22

2.6 Accuracy metrics (accuracy, Cohen’s kappa accuracy, sensitivity and
specificity) for different spectral resolutions. . . . . . . . . . . . . . . . 24

2.7 The relative importance of different wavelengths for model prediction
across spectral resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 The relative importance of different wavelengths for ASD model pre-
diction across the spectral bands of the Drone, Sentinel-2 and Pleiades
sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Confusion matrices for different spectral resolutions. Colour of tiles
show proportion of correct predictions across all 20 repetitions with no
colour for 0 predictions. Classes were abreviated Bacillariophyceae as
Bac, Bare Sediments as Bar, Magnoliopsida as Mag, Phaeophyceae as
Pha and Ulvophyceae as Ulv. Labels with numbers show within class
sensitivity and specificity. . . . . . . . . . . . . . . . . . . . . . . . . . 28





ix

List of Tables

2.1 Presence and absence of red macroalgae for each drone flight . . . . . 15
2.2 Accuracy metrics (accuracy, Cohen’s kappa accuracy, sensitivity and

specificity) for different spectral resolutions ± standard error. . . . . . 24
2.3 Photosynthetic and carotenoid pigments present (1) or absent (0) in

each taxonomic class, along with their absorption wavelength measured
in vivo and in vitro with an ASD spectroradiometer and by High Per-
formance Liquid Chromatography (HPLC) respectively. Chl b: chloro-
phyll b, Chl c: chlorophyll c, Fuco: fucoxanthin, Zea: zeaxanthin,
Diato: diatoxanthin, Diadino: diadinoxanthin, Neo: neoxanthin. . . . . 31





1

Preface

This PhD work was carried out at Nantes University between 2022 and 2024, within

the “Remote Sensing, Benthic Ecology and Ecotoxicology” (RSBE²) team of the In-

stitute of Marine Substances and Organisms (ISOMer). This thesis was funded by

the Ministry of Research and Higher Education and supervised by the doctoral school

“Plant, Animal, Food, Sea, Environment” (VAAME).

Scientific papers

• Brunier, G., Oiry, S., Gruet, Y., Dubois, S. F., & Barillé, L. (2022).

Topographic Analysis of Intertidal Polychaete Reefs (Sabellaria alveo-

lata) at a Very High Spatial Resolution. Remote Sensing, 14(2), 307.

https://doi.org/10.3390/rs14020307

• Brunier, G., Oiry, S., Lachaussée, N., Barillé, L., Le Fouest, V., & Méléder,

V. (2022). A Machine-Learning Approach to Intertidal Mudflat Mapping Com-

bining Multispectral Reflectance and Geomorphology from UAV-Based Moni-

toring. Remote Sensing, 14(22), 5857. https://doi.org/10.3390/rs14225857

• Zoffoli, M.L., Gernez, P., Oiry, S., Godet, L., Dalloyau, S., Davies, B.F.R.

and Barillé, L. (2023), Remote sensing in seagrass ecology: coupled dynam-

ics between migratory herbivorous birds and intertidal meadows observed by

satellite during four decades. Remote Sens Ecol Conserv, 9: 420-433. https:

//doi.org/10.1002/rse2.319

• Davies, B. F. R., Gernez, P., Geraud, A., Oiry, S., Rosa, P., Zoffoli,

M. L., & Barillé, L. (2023). Multi- and hyperspectral classification of

soft-bottom intertidal vegetation using a spectral library for coastal bio-

diversity remote sensing. Remote Sensing of Environment, 290, 113554.

https://doi.org/10.1016/j.rse.2023.113554

https://doi.org/10.1002/rse2.319
https://doi.org/10.1002/rse2.319


2 Preface

• Román, A., Prasyad, H., Oiry, S., Davies, B. F. R., Brunier, G., & Barillé, L.

(2023). Mapping intertidal oyster farms using unmanned aerial vehicles (UAV)

high-resolution multispectral data. Estuarine, Coastal and Shelf Science, 291,

108432. https://doi.org/10.1016/j.ecss.2023.108432

• Nurdin, N., Alevizos, E., Syamsuddin, R., Asis, H., Zainuddin, E. N., Aris,

A., Oiry, S., Brunier, G., Komatsu, T., & Barillé, L. (2023). Precision

Aquaculture Drone Mapping of the Spatial Distribution of Kappaphy-

cus alvarezii Biomass and Carrageenan. Remote Sensing, 15(14), 3674.

https://doi.org/10.3390/rs15143674

• Davies, B. F. R., Oiry, S., Rosa, P., Zoffoli, M. L., Sousa, A. I., Thomas,

O. R., Smale, D. A., Austen, M. C., Biermann, L., Attrill, M. J., & others.

(2024). A sentinel watching over inter-tidal seagrass phenology across Western

Europe and North Africa. Communications Earth & Environment, 5(1), 382.

https://doi.org/10.1038/s43247-024-382

• Davies, B. F. R., Oiry, S., Rosa, P., Zoffoli, M. L., Sousa, A. I., Thomas, O. R.,

Smale, D. A., Austen, M. C., Biermann, L., Attrill, M. J., Roman, A., Navarro,

G., Barillé, A.-L., Harin, N., Clewley, D., Martinez-Vicente, V., Gernez, P., &

Barillé, L. (2024). Intertidal seagrass extent from Sentinel-2 time-series show

distinct trajectories in Western Europe. Remote Sensing of Environment, 312,

114340. https://doi.org/10.1016/j.rse.2024.114340

• Román, A., Oiry, S., Davies, B. F. R., Rosa, P., Gernez, P., Tovar-Sánchez,

A., Navarro, G., Méléder, V., & Barillé, L. (2024). Mapping intertidal

microphytobenthic biomass with very high-resolution remote sensing imagery

in an estuarine system. Science of The Total Environment, 955, 177025.

https://doi.org/10.1016/j.scitotenv.2024.177025

• Oiry, S., Davies, B. F. R., Sousa, A. I., Rosa, P., Zoffoli, M. L., Brunier, G.,

Gernez, P., & Barillé, L. (2024). Discriminating Seagrasses from Green Macroal-

gae in European Intertidal Areas Using High-Resolution Multispectral Drone

Imagery. Remote Sensing, 16(23), 4383. https://doi.org/10.3390/rs16234383

• Barillé, L., Paterson, I. L. R., Oiry, S., Aris, A., Cook-Cottier, E. J.,

& Nurdin, N. (2025). Variability of Kappaphycus alvarezii cultivation



Oral presentation 3

in South-Sulawesi (Indonesia) related to the monsoon shift: Water qual-

ity, growth and colour quantification. Aquaculture Reports, 40, 102557.

https://doi.org/10.1016/j.aqrep.2024.102557

Oral presentation

• Precision aquaculture drone mapping of the spatial distribution of Kappaphycus

alvarezii biomass and carrageenan (August 2023) ; 8th European Phycological

Congress, Brest, France.

• Effect of Marine and Atmospheric Heatwaves on Reflectance and Pigment Com-

position of Intertidal Zostera noltei (February 2025) ; BioSpace25 - Biodiversity

insight from Space, Frascati, Italy.





Chapter 1:
Introduction and Overview





7

Chapter 1

Introduction & Overview

1.1 General Introduction

1.1.1 Coastal Environment

1.1.2 Remote sensing applied to Coastal environments

1.2 Overview

Discriminating green macroalgae from seagrasses throught remote sensing poses sig-

nificant challenges due to their overlapping spectral signatures and similar pigment

compositions, particularly in the visible and near-infrared spectral regions. Both veg-

etation types share key pigments such as chlorophyll-a and carotenoids, which lead to

analogous reflectance patterns. This similarity complicates their differentiation using

conventional remote sensing techniques, especially when these species coexist within

heterogeneous habitats. Despite these challenges, advances in spectral resolution and

machine learning provide avenues for improved classification.

Chapter 2 establishes the foundation by presenting a proof-of-concept study that

demonstrates the feasibility of discriminating green macroalgae from seagrasses in

intertidal zones using remote sensing. By employing both multi- and hyperspectral

datasets, the study elucidates the specific wavelengths and spectral resolutions that

maximize classification accuracy, showcasing the potential of remote sensing for de-

tailed habitat mapping.

Building upon the proof of concept, Chapter 3 focuses on the development of a robust

algorithm capable of automating the discrimination of green macrophytes in heteroge-

neous intertidal habitats. Utilizing high-resolution multispectral drone imagery and
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advanced machine learning techniques, this chapter addresses the spatial complex-

ity of these environments. The algorithm’s validation across diverse geographic and

ecological settings ensures its applicability beyond the initial study sites. This ad-

vancement underscores the critical role of cutting-edge remote sensing technologies in

ecological monitoring.

In Chapter 4, the methodology evolves to include red macroalgae, specifically target-

ing the invasive species Gracilaria vermiculophylla. By adapting the algorithm from

Chapter 3, this study extends its application to a different taxonomic group, demon-

strating the flexibility and scalability of the approach. Additionally, this chapter inte-

grates LiDAR-based topographical data to examine the relationship between habitat

characteristics and macroalgal distribution. The insights gained from mapping and

modeling the spatial dynamics of G. vermiculophylla provide valuable implications

for managing invasive species and conserving native biodiversity.

Finally, Chapter 5 examines the physiological impacts of environmental stressors,

specifically marine and atmospheric heatwaves, on seagrass reflectance. Through

controlled laboratory experiments and field validations, this chapter highlights the

spectral responses of Zostera noltei under heatwave conditions. Well-established spec-

tral indices such as the NDVI and GLI are employed, and a new index, the Seagrass

Heat Shock Index (SHSI), is developed to specifically identify heatwave-impacted sea-

grasses. These indices provide metrics to detect and quantify stress-induced changes.

These findings emphasize the role of remote sensing in assessing the resilience and

vulnerability of intertidal ecosystems under climate change.





Chapter 2:
Multi- and hyperspectral classification of
soft-bottom intertidal vegetation using a

spectral library for coastal biodiversity remote
sensing
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Chapter 2

Hyperspectral classification of
intertidal vegetation for coastal
biodiversity

2.1 Introduction

Soft-bottom intertidal ecosystems support a diversity of habitats (seagrass meadows,

honeycomb worm reefs, oyster reefs, mudflats) and biological communities worldwide

(Mouritsen and Poulin 2002; Van Der Maarel 2003; Murray et al. 2019). The richness

and diversity these habitats contain help to provide numerous ecosystem services, such

as protection against coastal erosion, carbon regulation, oxygen production, seasonal

habitat for migratory birds (Zoffoli et al. 2022), and reserves and nurseries for fisheries

(Gardner and Finlayson 2018). However, the significant roles of intertidal areas for

biodiversity and the ecosystem services they provide are not universally known (R.

K. F. Unsworth et al. 2019; R. K. F. Unsworth, Nordlund, and Cullen-Unsworth

2019; R. K. Unsworth et al. 2022; Reddin et al. 2022). Like the majority of coastal

ecosystems worldwide, intertidal areas are exposed and vulnerable to anthropogenic

pressures, particularly more so due to their closer proximity to potentially destructive

human activity (Murray et al. 2019; Green et al. 2021). Global warming, sea-level rise

and the rising frequency of extreme climatic events lead to a reduction of their surface

(Masson-Delmotte et al. 2021), and to a diminution of their capability to recover from

perturbations (Schiel et al. 2021). The effects of climate change impact intertidal

habitats inconsistently; declines of certain species and the proliferation of others

(Bryndum-Buchholz et al. 2019). Intertidal areas are also directly degraded by human

activities, such as coastal urbanization (Momota and Hosokawa 2021), use of various

biochemical contaminants (Durou et al. 2007; Hope et al. 2021), eutrophication

(Cardoso et al. 2004), land reclamation (Sedano et al. 2021), and shellfish farming
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(Garmendia et al. 2021). These pressures impact intertidal biodiversity (Beltrand

et al. 2022) and the ecosystem services it provides (Gardner and Finlayson 2018;

Brondízio et al. 2019).

To reduce these impacts and improve the protection of intertidal areas, several mea-

sures have been implemented over the past decades in Europe, such as the Water

Framework Directive (WFD, Parliament and Council 2001), and the Marine Strategy

Framework Directive (MSFD, Parliament and Council 2008). However, according to

the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Ser-

vices (IPBES, Brondízio et al. 2019), current efforts are insufficient to reach the

objectives of ecosystem conservation and sustainable exploitation. The ecological

status of many intertidal areas have never been evaluated, with many areas uncharac-

terised. Even in documented areas, there are many socio-environmental challenges to

implementing efficient protection and sustainable exploitation (R. K. F. Unsworth et

al. 2019). Providing updated and accurate maps of intertidal areas is a prerequisite

to addressing such challenges (McKenzie et al. 2020). However, the traditional meth-

ods for mapping rely on field surveys to estimate species abundance, biomass and

habitat surface, which are time-consuming and labor-intensive (Nijland, Reshitnyk,

and Rubidge 2019; Olmedo-Masat et al. 2020). The collected data are also limited by

sampling constraints, as many intertidal areas are difficult to access. Remote sensing

can overcome these issues by acquiring temporally and spatially resolved observations

of coastal areas (Papathanasopoulou et al. 2019; Veettil et al. 2020). Likewise, the

use of drones can increase the surveyed area compared to traditional survey meth-

ods while providing greater spatial resolution and flexibility than satellite imagery

(Gomes et al. 2018).

Marine vegetation, defined as any species of plant that, at any time in its life, must

inhabit water, other than freshwater, includes a wide range of highly important in-

tertidal species, such as seagrasses, mangroves and marine algae. In the visible and

near-infrared range (VNIR), exposed intertidal vegetation can be identified by its

spectral reflectance (Olmedo-Masat et al. 2020; Douay et al. 2022). Solar irradiance

is absorbed by plant pigments in the visible spectral range (400 to 700 nm: Hallik

et al. 2017), while in the NIR range (700 to 900 nm), light is reflected by tissues

in pluricellular organisms (Susan L. Ustin and Jacquemoud 2020), and by the sedi-

ment background for biofilms composed of unicellular photoautotrophs (Barillé et al.
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2011). The spectral signature or lack thereof can be used as a marker of the differ-

ent classes of organisms (Thorhaug, Richardson, and Berlyn 2007). Reflectance is

increasingly being used to measure Essential Biodiversity Variables (EBVs) in coastal

ecosystems, such as species traits or ecosystem structure and function (Pereira et al.

2013; Muller-Karger et al. 2018). Time-series derived from satellite observations also

make it possible to study changes in biodiversity metrics and environmental drivers

over decades, as demonstrated recently for the monitoring of seagrass status (Zoffoli

et al. 2021; Lizcano-Sandoval et al. 2022), or macroalgae invasions (Hu, Hu, and

Ming-Xia 2017; Santos et al. 2020). Most satellite sensors are multispectral (Joyce et

al. 2009; Xue and Su 2017), and generally measure the reflectance using three to ten

spectral bands in the VNIR spectral domain. Depending on the band numbers and

characteristics, the discrimination of different types of marine vegetation can be lim-

ited (Kutser, Vahtmäe, and Martin 2006; Casal et al. 2013). Hyperspectral missions

such as PRecursore IperSpettrale della Missione Applicativa (PRISMA), or EnMAP

acquiring data along a large number of narrow spectral bands could improve habitat

identification accuracy (Susan L. Ustin et al. 2004; Hestir et al. 2015). However,

these sensors often provide relatively low spatial and temporal resolutions (Veettil

et al. 2020), can contain high levels of noise per spectral band, and are not openly

available resources (e.g. PRISMA imagery: 30 m pixel size, 29 day orbit repeat cycle

and are only available on prior request or EnMAP imagery: 30 m pixel size and a 27

day orbit repeat cycle).

Mapping intertidal habitats of ecological importance, such as seagrass beds, can be

achieved with a multispectral resolution in the case of exposed monospecific meadows

observed during low tide (Zoffoli et al. 2020, 2022). However, when seagrass are

mixed with other green vegetation, discrimination with multi- or even hyperspectral

sensors (in situ and satellite) is challenging (Phinn et al. 2018; Veettil et al. 2020).

Green macroalgae and more specifically the taxonomic class of Ulvophyceae share the

same pigmentary composition with seagrass and should be a priori more complex to

discriminate (Oiry and Barillé 2021). Other taxonomic classes common in intertidal

soft-bottom environments such as Xanthophyceae and Bacillariophyceae could also

be confused with seagrass when present at low cover (Zoffoli et al. 2020). It is

generally agreed that the identification at broad taxonomic levels (eg. class level) is

more precise than at the species level (Kutser, Vahtmäe, and Martin 2006; Casal et al.

2013). Assessing the ability of a sensor to discriminate seagrass meadows from other
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intertidal vegetation can be explored with spectral libraries. They have been used

to study the spectral discrimination between macroalgal species (Casal et al. 2013;

Dierssen, Chlus, and Russell 2015; Chao Rodríguez et al. 2017; Mcilwaine, Casado,

and Leinster 2019; Olmedo-Masat et al. 2020; Douay et al. 2022), and to identify

different seagrass species (Fyfe 2003) or to differentiate seagrass from other nearshore

vegetation types (Légaré et al. 2022). By applying to in situ spectra collected with a

spectroradiometer the spectral responses function of multi- and hyperspectral sensors,

it is possible to investigate their abilities to classify intertidal green macrophytes.

In particular, the possibility to discriminate seagrass from green macroalgae at a

multispectral resolution remains to be studied using machine learning approaches.

This study aimed at analysing the potential of multi- and hyperspectral satellite

missions (Pleiades, Sentinel-2, and PRISMA), as well as a multispectral drone sensor,

for the discrimination of green macrophytes from low tide soft-bottom intertidal areas

when exposed using remote sensing. A spectral library of the spectral signatures

of seagrass, green macroalgae, and other intertidal vegetation was compiled from

measurements performed with a field spectroradiometer. This library represents a

novel taxonomic and spatial coverage with spectra from a wide array of exposed

soft-bottom intertidal habitats collected across almost 15 degrees of latitude. High-

resolution spectra were degraded to each sensor spectral resolution. A combination

of multivariate and machine learning algorithms were then performed to compare the

ability of the different spectral resolution data at distinguishing the main taxonomic

classes of intertidal vegetation. The wavelengths which best discriminated green

macrophytes were identified and recommendations given on potential future satellite

sensors.

2.2 Materials and Methods

2.2.1 Spectral Reflectance Acquisition

Spectral reflectance data were collected from a range of macroalgal, microphytoben-

thic and seagrass dominated soft-bottom intertidal areas. Samples were grouped at

the class level: Magnoliopsida (Seagrasses), Ulvophyceae (Green Macroalgae), Phaeo-

phyceae (Brown Macroalgae), Xanthophyceae (Yellow Algae) and Bacillariophyceae

(Diatoms: Table 2.1 & Figure 2.1). Brown macroalgae growing on rocky substrates
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Table 2.1: Presence and absence of red macroalgae for each drone
flight

were added as they are often found stranded in the intertidal zone. Spectral re-

flectance were also recorded from sediment areas without clear vegetation, hereafter

referred to as “bare sediment” for the sake of simplicity. Scientific names and taxon-

omy were based on the World Register of Marine Species (WORMS). Species were

identified in situ when recently exposed but not covered by a layer of water.

Multiple field campaigns taking place from 2 hours prior to 2 hours post minimum

tide were carried out across temperate intertidal areas along the Western Atlantic

coastline during the summer months (Figure 2.2). The campaigns took place in

France in Bourgneuf Bay (Barillé et al. 2010, 2011; Zoffoli et al. 2020), Marennes-

Oléron Bay, Auray Estuary, Mont-Saint-Michel Bay, Morbihan Gulf and Traict of

Merquel, in Spain in Bolonia Beach (Roca et al. 2022) and Bay of Cadiz (Zoffoli et

al. 2020), and in Portugal in the Tagus Estuary and Aveiro Lagoon.

2.2.2 Data Analysis

2.2.2.0.1 Spectral Degradation

The efficacy, efficiency and ability of classifying intertidal soft-bottom vegetation were

assessed for a variety of remote-sensing sensors, including two multispectral satellite

sensors (the high-resolution imager (HiRI) onboard Pleiades and the multi-spectral
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Figure 2.1: Examples of taxonomic classes of soft-bottom intertidal
vegetation in the field (a: Phaeophyceae (Fucus vesiculosus), b: Mag-
noliopsida (Zostera noltei), c: Ulvophyceae (Ulva linza), d: Bacillar-
iophyceae (Diatoms) and e: Xanthophyceae (Vaucheria spp.)). Scale

bars show approximate scale.

instrument (MSI) onboard Sentinel-2), one hyperspectral satellite sensor (the hyper-

spectral camera (HYC) onboard PRISMA satellite) and one airborne multispectral

sensor (MicaSense RedEdge MX-dual Sensor on board a DJI Matrice 200 drone).

These sensors cover a gradient of spectral resolution from multispectral to hyperspec-

tral (Figure 2.3). The spectral response functions of Pleiades and Sentinel-2 were

used to degrade the hyperspectral library to the respective resolution of each sensors.

The highest spatial resolution of Sentinel-2 (10 m) consists of 4 spectral bands while

the 20 m sensor has 4 additional bands in the VNIR spectral range (total 8 bands).

Sentinel-2 spectral bands, such as at 443 nm, were not used because its spatial reso-

lution (60 m) is too coarse for intertidal seagrass mapping (Zoffoli et al. 2020). To

degrade the ASD library to the PRISMA spectral resolution, only central wavelengths

and bandwidths (from 400 to 900 nm) were obtained from the Agenzia Spaziale Ital-

iana (ASI 2020). Likewise, central wavelengths with bandwidths were available for

the Micasense (“Drone” henceforth). Therefore, the mean of the reflectance values

included in the bandwidth of each PRISMA and Drone function band were computed.

Across all sensors, a moving average was applied to the ASD spectral library with a
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Figure 2.2: Sample collection sites across Europe.
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5 nm smoothing window to reduce instrument-induced noise in the data.

Figure 2.3: Spectral response functions for different hyper- and multi-
spectral sensors (ASD, Pleiades, Sentinel-2 (10 m), Sentinel-2 (20 m),

Drone, and PRISMA).

2.2.2.0.2 Standardisation

All spectra were standardised to reduce the effect of variable biomass, density or

thickness of sample, with a Min-Max transformation (Cao et al. 2017). This calcula-

tion emphasised the spectral shapes in the visible range associated with the pigment

composition (Douay et al. 2022):

𝑅∗
𝑖 (𝜆) = 𝑅𝑖(𝜆) − 𝑚𝑖𝑛(𝑅𝑖)

𝑚𝑎𝑥(𝑅𝑖) − 𝑚𝑖𝑛(𝑅𝑖)

where 𝑅𝑖(𝜆) is the reflectance at a specific wavelength (𝜆) for a specific spectrum (i),

where min(𝑅𝑖) and max(𝑅𝑖) are the corresponding minimum and maximum values.
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2.2.2.1 Statistical Analysis

To visually assess the differences between classes across different spectral resolutions

dissimilarity matrices were computed for all vegetative classes, with the cosine dis-

tance to compute a Spectral Angle Mapper (SAM). The SAM algorithm considers

that each spectrum is a vector in 𝑛-dimensions space, 𝑛 being the number of bands,

and measures the angle between two spectra to determine their dissimilarity (Kruse

et al. 1993). The difference between classes were visualised and statistically as-

sessed with non-metric Multi-Dimensional Scaling (nMDS) ordination and Analysis

of Similarity (ANOSIM) from the ‘vegan’ package within the programming language

R (Oksanen et al. 2024). ANOSIM was carried out on the SAM distance matrix

using 999 permutations.

To assess the ability of different sensors at classifying intertidal vegetative and non

vegetative classes (bare sediments, Bacillariophyceae, Magnoliopsida, Phaeophyceae,

Ulvophyceae & Xanthophyceae) from their spectral reflectance data, supervised Ma-

chine Learning (ML) algorithms were applied from the “tidymodels” ecosystem of

packages within the programming language R (Kuhn and Wickham 2020; R Core

Team 2023). Multiple models were developed (Random Forest, XGBoost and Multi-

nomial Classifiers) with relatively similar results. The model described here was an

ensemble decision tree classification approach; Random Forest from the “ranger” pack-

age (Wright 2024). As Random Forest employs randomisation of trees, 20 repetitions

of the analysis were carried out to avoid over or under representation of specific sam-

ples. Spectral data were split into training and testing sets using a proportion of 0.75

to 0.25 using the response variable to stratify samples and reduce group imbalance.

Training data were then further split into 30 training and validation datasets using

bootstrap resamples to allow hyper-parameter tuning from the “rsample” package

(Frick et al. 2024). Class was modelled as a function of all available features (stan-

dardised reflectance of each wavelength), where all features displaying zero variance

across all classes were removed before model tuning as zero variance values would

provide no additional information for the models. This meant only the first three

bands of Pleiades and Sentinel-2 at 10 m were evaluated as their highest bands in

the NIR showed no variance. Models were tuned to maximise the Area Under the

Curve of the Receiver Operating Characteristic (ROC), which measures the diagnos-

tic ability of a classifier based on the ratio of false positive and true positive rate.
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Accuracy, Cohen’s kappa (an accuracy measure that takes into account class size

discrepancy), sensitivity and specificity were calculated using the ‘yardstick’ package,

while the ‘vip’ package was used to calculated variable importance (Kuhn, Vaughan,

and Hvitfeldt 2024; Greenwell and Boehmke 2023). Variable importance will show

the relative importance of different wavelengths and was calculated by the prediction

error, using permuted out-of-bag data and comparing differences to the prediction

error of permuted predictor variables.

2.3 Results

2.3.1 Spectral Signatures at Different Spectral Resolutions

At hyperspectral resolution (ASD, PRISMA), the differences among vegetative habi-

tats were obvious, with the highest dissimilarities observed from 550 – 650 nm and

from 700 – 850 nm (Figure 2.4). In particular, the spectral characteristics among the

classes were more conspicuous in the green - red spectral range, such as reflectance

peaks at 550 nm (Magnoliopsida, Ulvophyceae, Xanthophyceae), 600 nm (Bacillario-

phyceae), and 650 nm (Xanthophyceae and Bacillariophyceae). The absorption band

at 675 nm, present in every class, corresponded to chlorophyll a while at 630 nm

a smaller absorption band for the Bacillariophyceae and the Xanthophyceae corre-

sponded to chlorophyll c. Phaeophyceae was the class showing the lowest reflectance

in the visible range. All classes but the Ulvophyceae had a positive slope in the NIR.

The degradation to a multispectral resolution made these spectral features harder and

or impossible to distinguish. The differences between vegetation classes were more

pronounced for the drone and Sentinel-2 20 m sensors (8 - 10 spectral bands) than

for the Pleiades and Sentinel-2 10 m sensors (4 spectral bands).

2.3.2 Spectral Dissimilarity Between the Taxonomic Classes

The nMDS ordinations calculated with a cosine distance showed that all vegetation

classes could be distinguished with a hyperspectral sensor (ASD, PRISMA), despite

some overlaps between the Magnioliopsida, Ulvophyceae and Xanthophyceae (Fig-

ure 2.5). Interestingly, similar ordination patterns were also observed for the multi-

spectral sensors with the highest number of bands (i.e., Drone, Sentinel-2 20 m). The

greatest dissimilarity between classes was observed for the ASD (R = 0.638 & p =

0.001). The differences between PRISMA, the Drone and Sentinel-2 at 20 m were
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Figure 2.4: Spectral signatures of different vegetation classes at dif-
ferent spectral resolutions (ASD, Pleiades, Sentinel-2 10, Sentinel-2
10-20 m, Drone and PRISMA). Lines show mean signature per wave-
length, while shading shows 95% confidence interval. Confidence in-
tervals were consisently small and therefore are hard to distinguish.
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very similar (PRISMA: R = 0.611 & p = 0.001, Drone: R = 0.588 & p = 0.001 &

Sentinel-2 at 20 m), while Pleiades and Sentinel-2 at 10 m were far lower (Pleiades:

R = 0.49 & p = 0.001 & Sentinel-2 at 10 m). Strong overlaps were observed between

the classes Magnioliopsida and Ulvophyceae at the low spectral resolution of Pleiades

and Sentinel-2 10 m.

Figure 2.5: nMDS ordination showing similarities between vegeta-
tion classes at different spectral resolutions (ASD, Pleiades, Sentinel-
2 10, Sentinel-2 10-20 m, Drone and PRISMA). Point distances are
based on cosine distance, polygons show the minimum convex hull to
surround all points. Stress values show the inaccuracy of the 2 dimen-

sional representations.

2.3.3 Accuracy Across Sensors and Importance of Wavelengths

When assessed by Random Forest modelling, accuracy metrics of different spectral

resolutions showed that Sentinel-2 20 m and Drone spectra gave high mean accuracy

regardless of accuracy metric (Accuracy: 0.95 ± 0.004 for Sentinel-2 20 m & 0.948

± 0.004 for Drone. Cohen’s Kappa Accuracy: 0.935 ± 0.006 for Sentinel-2 20 m &
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0.934 ± 0.005 for Drone: Figure 2.6 & Table 2.2). Above a spectral resolution of

10 bands, there was no gain in mean accuracy even with large increases in spectral

resolution (Accuracy: 0.95 ± 0.005 for ASD & 0.951 ± 0.006 for PRISMA. Cohen’s

Kappa Accuracy: 0.936 ± 0.006 for ASD & 0.938 ± 0.008 for PRISMA). The sensors

with the lowest spectral resolution (Pleiades and Sentinel-2 10 m) showed the lowest

accuracy, yet still were accurate around 80 to 90% of the time (Accuracy: 0.861 ±

0.006 for Pleiades & 0.835 ± 0.008 for Sentinel-2 10 m. Cohen’s Kappa Accuracy:

0.821 ± 0.008 for Pleiades & 0.792 ± 0.005 for Sentinel-2 10 m). Likewise, model

specificity and sensitivity showed the greatest values from 8 spectral bands and above,

but no increase was shown from 10 to 300 bands (Sensitivity: 0.948 ± 0.006 for

Sentinel-2 20 m, 0.941 ± 0.006 for Drone, ± 0.006 for PRISMA & 0.938 ± 0.008

for ASD; Specificity: 0.989 ± 0.001 for Sentinel-2 20 m, 0.989 ± 0.001 for Drone,

± 0.001 for PRISMA & 0.989 ± 0.001 for ASD). Below 8 spectral bands, mean

sensitivity and specificity were lowest, yet still around 85% (Sensitivity: 0.847 ± 0.008

for Pleiades & 0.844 ± 0.008 for Sentinel-2 10 m; Specificity: 0.97 ± 0.001 for Pleiades

& 0.966 ± 0.002 for Sentinel-2 10 m). Standardised variable importance, the relative

amount the inclusion of a variable in the model affected its’ performance, showed

the wavelengths the model considered most important (Fig. 7). Consistently across

all spectral resolutions, wavelengths 517–556 nm were shown to be highly important.

When present, wavelengths around 722–754 nm were the most important. When the

variable importance of the ASD was overlaid on the response functions for the different

multispectral sensors, the ability of each sensor to effectively sample the wavelengths

of interest become clearer (Fig. 8). The Drone and Pleiades sensors effectively sample

the top of the peak in importance from 517 to 556 nm, while Sentinel-2 (10 m and

20 m) is only sampling the edges of the peak. Both Pleiades and Sentinel-2 at 10 m

did not sample the highest peak of importance from 722 to 754 nm, while the Drone

and Sentinel-2 at 20 m only sampled one side of this peak. Generally, the Drone is

sampling all the major and minor peaks of importance apart from one minor peak

around 780 nm.

Standardised variable importance, the relative amount the inclusion of a variable in

the model affected its’ performance, showed the wavelengths the model considered

most important (Figure 2.7). Consistently across all spectral resolutions, wavelengths

517–556 nm were shown to be highly important. When present, wavelengths around

722–754 nm were the most important.
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Figure 2.6: Accuracy metrics (accuracy, Cohen’s kappa accuracy,
sensitivity and specificity) for different spectral resolutions.

Table 2.2: Accuracy metrics (accuracy, Cohen’s kappa accuracy, sen-
sitivity and specificity) for different spectral resolutions ± standard

error.
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Figure 2.7: The relative importance of different wavelengths for
model prediction across spectral resolutions.
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When the variable importance of the ASD was overlaid on the response functions

for the different multispectral sensors, the ability of each sensor to effectively sample

the wavelengths of interest become clearer (Fig. 8). The Drone and Pleiades sensors

effectively sample the top of the peak in importance from 517 to 556 nm, while

Sentinel-2 (10 m and 20 m) is only sampling the edges of the peak. Both Pleiades

and Sentinel-2 at 10 m did not sample the highest peak of importance from 722 to

754 nm, while the Drone and Sentinel-2 at 20 m only sampled one side of this peak.

Generally, the Drone is sampling all the major and minor peaks of importance apart

from one minor peak around 780 nm.

Figure 2.8: The relative importance of different wavelengths for ASD
model prediction across the spectral bands of the Drone, Sentinel-2 and

Pleiades sensors.
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2.3.4 Confusion Matrices

Models accurately classed bare sediments consistently, regardless of spectral resolu-

tion (Figure 2.9). Ulvophyceae appeared to be mislabeled the most, while Magno-

liopsida and Phaeophyceae showed consistently high prediction accuracy, especially

by the Drone data. Across all spectral resolutions a small number of Magnoliop-

sida samples were mislabeled as Bacilliariophyceae, Xanthophyceae and Ulvophyceae.

A few Bacilliariophyceae and Ulvophyceae samples were incorrectly labeled as Mag-

noliopsida. Likewise, identification of Xanthophyceae was consistenetly poor across

all spectral resolutions apart from Sentinel-2 at 20 m (Sensitivity: 0.79 ASD, 0.87

PRISMA, 0.76 Drone, 0.93 Sentinel-2 at 20 m, 0.7 Sentinel-2 at 10 m and 0.5 Pleiades

and Specificity: 0.84 ASD, 0.84 PRISMA, 0.86 Drone, 0.82 Sentinel-2 at 20 m, 0.57

Sentinel-2 at 10 m and 0.53 Pleiades). Pleiades and Sentinel-2 at 10 m had the worst

Magnoliopsida classification (Sensitivity: 0.66 Sentinel-2 at 10 m and 0.75 Pleiades;

Specificity: 0.79 Sentinel-2 at 10 m and 0.8 Pleiades).

2.4 Discussion

2.4.1 Spectral Library and Vegetation Classification

Spectral libraries have been used in coastal areas to analyse the capacity of hyper-

spectral sensors to discriminate macrophytes at different taxonomic resolutions (Mcil-

waine, Casado, and Leinster 2019; Douay et al. 2022; Diruit et al. 2022; for earlier

references see Chao Rodríguez et al. 2017) or to estimate the background contri-

bution on benthic diatoms reflectance spectra (Barillé et al. 2011). The spectral

library built up for this work was used to study the discriminatory ability of exposed

soft-bottom intertidal vegetation at a class taxonomic level for a variety of remote-

sensing instruments. Importantly, the classifier was designed to be applicable to both

multi- and hyperspectral sensors, which is an advantage compared to classification

methods only designed for hyperspectral sensors, such as derivative spectral analysis

(Mcilwaine, Casado, and Leinster 2019). The discrimination accuracy of the vege-

tation classes increased with spectral resolution, yet showed diminishing returns for

resolutions above ~10 spectral bands. The main result of this study was the capac-

ity to discriminate seagrass from green macroalgae at a multipectral resolution with

ten bands when using machine learning classification techniques. As expected, this

discrimination was also possible with hyperspectral sensors. Sensors with a spectral
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Figure 2.9: Confusion matrices for different spectral resolutions.
Colour of tiles show proportion of correct predictions across all 20
repetitions with no colour for 0 predictions. Classes were abreviated
Bacillariophyceae as Bac, Bare Sediments as Bar, Magnoliopsida as
Mag, Phaeophyceae as Pha and Ulvophyceae as Ulv. Labels with

numbers show within class sensitivity and specificity.
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resolution of four bands, such as Pleiades and Sentinel 2 (10 m), were poorer at accu-

rately discriminating between green macroalgae and seagrass, as their spectral shapes

were too similar (Figure 2.4 & Figure 2.6). The importance of effective seagrass clas-

sification is considerable, with seagrass conservation and restoration contributing to

16 of the 17 United Nations Sustainable Development Goals (SDGs: R. K. Unsworth

et al. 2022). A practical restraint of this analysis is the necessity for non-submerged

samples. However, the main challenge in mapping seagrass through remote sensing

stems from confusion between similarly pigmented green algae, leading to high lev-

els of uncertainty in current seagrass extent (McKenzie et al. 2020). Vegetation

classes were consistently distinguishable from bare sediments, as found elsewhere be-

tween bare rock and algae (Douay et al. 2022). Likewise, random forest models were

successfully able to discriminate between habitats (See also: Oiry and Barillé 2021;

Légaré et al. 2022), with generally lower accuracy at lower spectral resolution, yet

even at the lowest spectral resolutions (Pleiades and Sentinel-2 10 m) there was a

mean test accuracy of 86.1% and 83.5% respectively (82.1% and 79.2% respectively

when class imbalance was considered with Cohen’s kappa).

2.4.2 Spectral Discrimination and Pigment Composition

Two wavelength regions, respectively in the green (~517–556 nm) and NIR (~722–

754 nm) spectral domains, were identified for their importance to the random forest

model as contributing most to the discrimination between taxonomic classes (Fig-

ure 2.7). The wavelength window around 530 nm has already been recommended to

distinguish different species of seagrass (Fyfe 2003), and brown from green macroalgae

(Mcilwaine, Casado, and Leinster 2019). The spectral differences in the visible range

between the classes are partially explained by their difference of pigment composition

(Table 2.3). Pigments have different optical properties and absorption wavelengths,

which influence the reflectance spectra shapes. Chlorophyll c and fucoxanthin absorb

light at 636 nm and 550 nm respectively (Méléder et al. 2013). Those pigments are

present amongst diatoms and brown macroalgae, but absent in green macrophytes.

Xanthophyceae also contain chlorophyll c, but no fucoxanthin (Table 2.3). Chloro-

phylls and carotenoids absorptions can thus be used as diagnostic features to identify

vegetation types that do not share the same pigmentary composition (Casal et al.

2012; Douay et al. 2022; Méléder et al. 2013). In this work, spectral differences

have been observed between two classes having a similar pigment composition, the
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Magnoliopsida and the Ulvophyceae (Table 2.3). This indicates that the pigment con-

centrations and relative proportions, which can vary inside the main vegetation groups

(A. Bargain et al. 2013; Beach et al. 1997), contribute to the spectral discrimination

between taxonomic classes sharing the same pigment composition. Variations in the

configuration of photosynthetic and accessory pigments in the 3D pigment-protein

complexes within cells can also change the absorption features of taxons sharing the

same pigments (Kirk 1994), while 3D disposition of the plants as a whole can alter the

magnitude of reflectance (Hedley et al. 2018). As pigment absorptions correspond

to narrow spectral bands (Méléder et al. 2013; Douay et al. 2022), discriminating

the different types of intertidal vegetation relies on access to these specific absorp-

tion wavelengths, which explains why the hyperspectral sensors are generally more

accurate than the multispectral sensors. For the latter, the lack of relevant spectral

bands and the large width of the available ones does not permit to capture the diag-

nostic absorption features. NIR wavelengths have long been recognized as relevant

for the spectral discrimination of terrestrial plant diversity (Schmidt and Skidmore

2003). At these wavelengths, spectral signatures are mainly a function of light scat-

tering determined by the internal structure of leaves for angiosperms or thallus for

macroalgae (Guyot 1990). Fyfe (2003) showed that seagrass species could be sepa-

rated using NIR wavelengths, with a significant change in the slopes between 700

and 900 nm. In our study, the min-max standardization preserved the slope changes

for this spectral domain while removing the difference related to biomass variations

(Annaëlle Bargain et al. 2012). Within the NIR, the ~722-754 nm wavelength range

was identified in our work as the most discriminant for the spectral separation of

the taxonomic classes of intertidal macrophytes. The better results obtained with

the Drone and Sentinel-2 (20 m) bands suggest that a multispectral sensor with 10

relevant VNIR spectral bands could discriminate the main classes considered in this

study. Furthermore, the wavelengths of importance for distinguishing the taxonomic

classes here showed that the sensor used by Sentinel-2 could be greatly improved by

the inclusion of a band at the main peaks of importance (�517–556 nm and � 722–754

nm). Both Pleiades and Sentinel-2 at 10 m miss the the peak of highest importance.

Furthermore, the marginally higher performance of the Pleiades sensor compared to

that of the Sentinel-2 at 10 m could be linked to the overlap of two Pleiades bands

over the �517–556 nm peak, while Sentinel-2 at 10 m only has bands either side of

this peak. Thus, future satellite missions aiming to provide information on global
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Table 2.3: Photosynthetic and carotenoid pigments present (1) or
absent (0) in each taxonomic class, along with their absorption wave-
length measured in vivo and in vitro with an ASD spectroradiome-
ter and by High Performance Liquid Chromatography (HPLC) respec-
tively. Chl b: chlorophyll b, Chl c: chlorophyll c, Fuco: fucoxanthin,
Zea: zeaxanthin, Diato: diatoxanthin, Diadino: diadinoxanthin, Neo:

neoxanthin.

habitat cover, especially including intertidal habitats, should aim to provide sensors

with spectral patterns that cover the important wavelengths shown here. Dekker et

al. (2018) highlighted the utility multispectral sensors could have for monitoring a

wide range of aquatic systems, recommending ~26 bands between 380 and 780 nm,

specifically 684 nm to capture chlorophyl-a fluorescence. From the current analysis

focusing on intertidal habitats, the most important wavelengths to cover would be

around 530 & 730 nm. The main reason for this difference with the recommenda-

tions of Dekker et al. (2018) is that their work was specifically focused on submerged

vegetation and addressed a broader range of objectives. For an effective monitoring

system, specific and broad objectives of the satellite will ideally dictate the spectral

coverage of the sensors used.

2.4.3 Geographical and Temporal Range of Applicability

The present spectral library aimed to represent a diversity of soft-bottom intertidal

vegetation, with the main objective of discriminating seagrass from green macroalgae.

However, it has a greater diversity of green macrophytes, making unbalanced among

classes. Green macroalgae represent around 33% % of the library with 121 spectra

out of 366, while the yellow macroalgae only have 33 spectra. Such a difference has an

impact on the statistical analysis and the discrimination results, as some species are

over-represented and others underrepresented. Yet, use of Cohen’s kappa, which is

an accuracy metric taking into consideration this imbalance, gave minimal difference

to global accuracy. This library was built with data collected on the Atlantic coasts

of France, Spain and Portugal and could be improved by the addition of new species
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or spectra from the existing species from other sites, both across Europe and globally.

As advised by Bajjouk et al. (2019), Z. noltei spectral data were collected at their

development peak (June to September), as it is known that these macrophytes have

a seasonal pigment variation (A. Bargain et al. 2013). Likewise, Légaré et al. (2022)

found that depending on the season, spectral reflectance from intertidal habitats can

vary significantly. As such, the current spectral library should not be used outside

a late spring and summer period for Western Europe, as the varying pigment con-

tent can affect the reflectance spectral shapes. Seagrass spectral analysis could also

be refined by taking into account the presence of epiphytes on their leaves, which

was not done in this study. Epiphytes on seagrass leaves are known to have an im-

pact on the shape of the reflectance spectra (Fyfe 2003), as they are composed of

diatoms and brown algae. This might explain the proximity between some seagrass

and brown macroalgae spectra and the overlap between the diatoms and the seagrass

(Figure 2.5). The presence of epiphytes could alter the relevance of the most discrimi-

native wavelengths between seagrass and other macroalgae. Furthermore, this library

was created using 100% cover of taxonomic classes. This homogeneity is often rare

at the satellite pixel scales (10 - 60 m), meaning future work should assess the spec-

tral signatures of mixed intertidal vegetation to best predict extent of heterogeneous

intertidal vegetation.

2.4.4 Implications for Coastal Biodiversity Studies

The importance of long term monitoring of ecosystems is becoming more acknowl-

edged, especially when monitoring human impacts that may affect Essential Biodi-

versity Variables (EBVs), such as important habitats, species, or the functioning of

those species or habitats (Lengyel et al. 2008; Perera-Valderrama et al. 2020; Livore

et al. 2021; B. F. Davies et al. 2021, 2022; El-Hacen et al. 2020). This is becoming

even more apparent with the acceleration of human induced climate change, which is

likely to exacerbate or accelerate the effects of many other human impacts (Cramer

et al. 2018; Sage 2020). Yet, in situ long term monitoring of EBVs is rare (Edwards

et al. 2010). This rarity is due to a range of factors, most of which are driven by

financial cost, especially if multiple fieldwork campaigns per year are required to cap-

ture seasonal variation (Condal et al. 2012). Furthermore, many human impacts can

rarely be predicted a priori, so the ability to monitor their impact with sufficient

previous data is circumstantial (Sheehan et al. 2021; B. F. R. Davies et al. 2022).
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This prior data is imperative to properly monitor human impacts and subsequently

manage the activities leading to those impacts appropriately (Underwood 1992; Fox

et al. 2017; Edgar et al. 2004). The extent, both temporally and spatially, of Earth

Observation (EO) from satellite data alongside its accessibility means it has been used

to study long term anthropogenic impacts (Hu, Hu, and Ming-Xia 2017; Santos et al.

2020; Lizcano-Sandoval et al. 2022; Zoffoli et al. 2021). Unlike in situ monitoring

data, past EO data are easily available, meaning that the long term manifestation

of novel phenomena can be assessed effectively (Mahrad et al. 2020). Here, it was

shown that spectral reflectance measurements from a relatively low spectral resolu-

tion sensor (8-10 bands: e.g. sensor of Sentinel-2 at 20 m resolution) could effectively

and accurately classify soft-bottom intertidal vegetative habitats. However, the im-

portance of spectral coverage has also been highlighted; when EO is being utilised,

the specific response functions of sensors need to be aligned effectively with the objec-

tives of the analysis. These considerations, alongside the temporal and spatial scales;

revisit times of satellites, and the ability for satellites sensors to effectively observe

important spectral differences after atmospheric correction is applied, will dictate

the most appropriate satellites to be included in a Global Ocean Observing System

(GOOS) for optimal monitoring and understanding of the Essential Ocean Variables

(EOVs) in coastal ecosystems studies.

2.4.5 Conclusions

Here, the ability to distinguish between five different vegetative intertidal habitats

was assessed by analysing their spectral reflectance signatures. Around 366 spectra

were compiled across the European Atlantic coast, from Southern Spain to Northern

France. The spectral library was analysed at different multi- and hyperspectral reso-

lutions with the emphasis on comparing commonly used satellite and drone sensors.

This analysis not only highlighted the ability of a random forest spectral classifica-

tion model to distinguish between differently pigmented habitats but also between

similarly pigmented classes (green algae and seagrass). This approach could aid with

ongoing efforts to accurately estimate global seagrass extent, alongside common meth-

ods such as Normalised Difference Vegetation Index (NDVI) that can provide proxies

for vegetation coverage, such as monospecific intertidal seagrass meadow (Zoffoli et

al. 2020). In particular, our work demonstrated the potential of discriminating inter-

tidal seagrass from Ulvophyceae using satellite remote sensing, therefore unlocking a
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strong limitation for seagrass mapping in heterogeneous environments. High accuracy

at distinguishing habitats was found for hyperspectral sensors as well as multispec-

tral sensors consisting of >8 bands in the visible and near-infrared (ASD, PRISMA,

Sentinel-2 at 20 m resolution and the MicaSense RedEdge MX-dual Drone sensor). As

climate change alongside other anthropogenic activities continue to impact commu-

nity stability and functions, and potentially altering ecosystem services, monitoring

of habitats becomes ever more important. Intertidal habitats are a vital link between

terrestrial and coastal marine ecosystems, yet due to their dynamic nature and inac-

cessibility are difficult to assess. Therefore, the ability to monitor these ecosystems

over time with high spatial and temporal resolution is important. This research pro-

vides the evidence that soft-bottom intertidal green macrophytes can be accurately

classified at spectral resolutions currently available from satellite missions, assum-

ing consistency after atmospheric correction, thus offering new perspectives for EO

biodiversity studies of intertidal ecosystems. It further provides advice for the next

generation of satellite missions in terms of optimal spectral resolution and important

wavelengths.
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Chapter 3

Summary

In summary, this book has no content whatsoever.
1 + 1

[1] 2
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